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Abstract

Accidents caused by heavy vehicles have been increasing in recent years. This is mainly due to the fact that vehicle over-
loading results in steering difficulty and long braking distance. Therefore, this work aims to develop an automatic payload
measurement for heavy vehicles, so that drivers and police officers can monitor vehicle payload while on board the mea-
sured vehicle. For the ease of installation, high accuracy, and low cost, this work proposes to paste strain gages onto each
leaf spring in vehicle suspensions. Based on measured output voltages of bridge circuits in each suspension, the vehicle
payload is calculated. Moreover, for promoting the accuracy of calculated payload, this work develops neural network
models to account for nonlinearity in measurement. Finally, this work verifies model accuracy based on experimental data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Overloading of heavy vehicles results in road
damage, short vehicle life, and vehicle maneuver dif-
ficulty. Heavy vehicle accidents may also cause seri-
ous casualties. Therefore, in addition to careful
driving, overload avoidance of heavy vehicles is also
an important issue in preventing traffic accidents. A
truck scale is a common device for measuring the
0263-2241/$ - see front matter � 2007 Elsevier Ltd. All rights reserved

doi:10.1016/j.measurement.2007.07.003

* Corresponding author. Tel.: +886 423924505x7178; fax: +886
423930681.

E-mail addresses: skyang@ncut.edu.tw (S.K. Yang), tsliu@
mail.ncut.edu.tw (T.S. Liu), steve.me89@NCTU.edu.tw (Y.C.
Cheng).

1 Fax: +886 35720634.
weight of a heavy vehicle. However, truck scales
are usually installed at fixed locations, which are
not convenient for police to check vehicle payload
on the road.

Many devices for vehicle payload measurement
have been developed. Nishitani [1] installed a link-
ing device between the suspension and the body of
a heavy vehicle to measure the vehicle’s payload
which uses an electro-magnetic sensor in the device
that generates associated output voltage according
to the payload. The vehicle weight is hence derived
based on the voltage. In no. 5684254 of the United
States Patent, Nakazaki et al. [2] presented a pay-
load measurement method by measuring suspension
strain caused by payloads. Generally, leaf springs
are used in the suspension system of a heavy vehicle.
.
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Fig. 1. Zero-returning circuit.
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Different solutions for measuring different types of
leaf springs are described in patents. However,
applying different types of measuring devices to dif-
ferent types of vehicles leads to inconvenience in
use, which is the drawback of this approach.
Accordingly, a method that can be used for various
types of vehicles is presented in this study. Strain
gages are pasted on each suspension leaf spring in
a vehicle and hence the payload is calculated based
on voltage signals of strain gages. Experiments for
the proposed method have been conducted on a real
vehicle. The payload of the vehicle is obtained by
summing load readings in all suspensions; but resul-
tant errors vary in a wide range. To reduce the
error, neural network models that can account for
nonlinearity in measurement are developed in this
study.

With capabilities of filtering, adaptive learning,
etc., neural network can be used to deal with linear
and nonlinear problems. Hence, they have been
widely used in many aspects such as simulation
for the PH-value variation of a chemical combining
vessel [3], the solution of a chaos problem [4], the
prediction of a river level [5], and even dealing with
a financial problem [6]. This study verifies the accu-
racy of the proposed neural network models based
on experimental data.

Section 2 presents the experiment setup and the
results for a truck trailer. Section 3 presents the neu-
ral network models used to reduce calculated pay-
load error. Section 4 concludes this work.

2. Experiment for truck trailer

2.1. Electric circuits

To install the proposed apparatus on trailer sus-
pensions, this work in advance prepares a Wheat-
stone bridge, zero-returning circuit, voltage
regulator, and instrumentation amplifier:

2.1.1. Zero-returning circuit

The output of a bridge circuit comes from the
resistance variation of the sensor on the bridge;
resistors used for the arms of the bridge should be
precise and stable. Metal-film resistors are used for
the bridge in this work. Since the resistance error
of the strain gage (120.4 ± 0.4 X) is greater than
the resistance error of the bridge resistor (120 ±
0.012 X), the bridge is not balanced at no-load situ-
ation. Therefore, a zero-returning circuit, as shown
in Fig. 1, is needed. This circuit returns the output
of the bridge to zero by adjusting the R6 resistor.
It is found during the experiment that the value of
R6 affects both the sensitivity and the stability of
the circuit at the same time. The circuit has higher
stability but lower sensitivity when R6 is small. In
contrast, large R6 promotes the sensitivity but
degrades the stability. How to compromise and
end up with an optimal value is an issue of this
experiment. In this work, R5 is set to be 10 X and
R6 is designed to be a 25-turn variable resistor of
10 X with a 1000 X resistor connected to each side,
i.e. R6 varies between 2000 X and 2010 X by turning
the variable resistor. This configuration results in
the ease of zero-returning and maintaining the
sensitivity.
2.1.2. Voltage regulator

Since the input voltage of a bridge directly affects
the output, a voltage regulator for supplying a sta-
ble input voltage is required to generate accurate
bridge output. An IC of model LM317 made by
National Semiconductor is adopted to complete
the regulator circuit depicted in Fig. 2 and supply
2.5 V in this experiment.
2.1.3. Instrumentation amplifier

An instrumentation amplifier IC of model
INA131 made by Burr-Brown chip is employed to
do signal conditioning for the output signal of the
bridge. The IC circuit and its frequency response
are shown in Fig. 3. The IC gain is 100.057 when
there is no external resistor added. However, the
gain can be adjusted by connecting an extra resistor



Fig. 2. Regulator for supplying 2.5 V.

Fig. 3. Frequency response of instrumentation amplifier IC. (a) Circuit for simulation; (b) response.
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RG to be parallel with R3. The adjusted gain value is
formulated as

G ¼ 1þ 2R1

ðR3==RGÞ

� �
� R6

R4

� �

¼ 1þ 2� 25k

1
1

2:63kþ
1

RG

� �
2
664

3
775� 25k

5k

� �

¼ 100:057þ 250k
RG

: ð1Þ
2.2. Measurement for truck trailer

The vehicle measured in experiments is a truck
trailer with empty mass 10,040 kg that has been
measured by a truck scale as shown in Fig. 4. The
mass of the left, right, front, and rear portion of
the truck is measured as 4870 kg, 4770 kg, 3840
kg, and 6240 kg, respectively. Accordingly, the cen-
ter of gravity of the truck is not on the centerline.
Dimensions of the truck are shown in Fig. 5. The
truck’s suspensions are denoted as Left-Front
(LF), Left-Rear (LR), Right-Front (RF), and
Right-Rear (RR), respectively. A set of strain gages
are pasted on each of the four suspensions after the
leaf spring surface is cleaned. Fig. 6 shows the strain
gages pasted on the surface of leaf springs in the RR
Fig. 4. Photo of truck we
suspension. In conducting this experiment, two
kinds of objects are respectively used as payloads:
truck tires and a car. The results are described
below.
2.2.1. Results of using truck tires as payload

The mass of each tire used in the experiment is
67 kg. The gains of the four amplifiers for the four
bridges are all set at 1141 that is calculated accord-
ing to Eq. (1) by prescribing RG = 240 X. Fig. 7
shows resulting output voltage versus tire quantity
in four experiments that are conducted by loading
0–21 tires on the left, right, front, and rear side of
the trailer, respectively. As depicted in Fig. 7(a),
i.e. when tire loads are applied at the left side of
the truck as shown in Fig. 8, both LF and LR curves
go upward whereas both RF and RR curves go
downward with increasing load. This implies that
leaf springs on the left-hand side are in tension
whereas those on the opposed side are in compres-
sion. This results from inclination of the truck trai-
ler body when loads are placed on the left side.
Similar results can be observed in the other three
experiments, i.e. Fig. 7(b)–(d).

In contrast to vehicle leaning in previous four
experiments, the fifth experiment is performed by
placing tires at four corners inside the trailer.
Fig. 9 shows the results, where the same number
of tires are placed at each corner in the trailer at
ighed on truck scale.
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Fig. 5. Truck dimensions.

Fig. 6. Pasted strain gages on rear suspension. (a) Overall view;
(b) close-up view.
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the same time. Accordingly, 24 tires in total are
placed inside the trailer when fully loaded.

For converting the measured strain gauges volt-
age to the payload, the load applied to each suspen-
sion should be known beforehand. In Fig. 10, the
cross mark denotes the center of gravity of the pay-
load. The value is represented by W. From the side
view of the truck in Fig. 10, the following equations
can be derived in accordance with force balance and
torque balance:

ðP LF þ P RFÞ þ ðP LR þ P RRÞ ¼ W ; ð2Þ
ðP LF þ P RFÞ � ðL1 þ L2Þ ¼ W � L2; ð3Þ
ðP LR þ P RRÞ � ðL1 þ L2Þ ¼ W � L1: ð4Þ

where PLF, PRF, PLR, and PRR represent loads ap-
plied to suspensions LF, RF, LR, and RR, respec-
tively. Between front suspensions LF and RF, the
following equation can be derived:

P LF � L3 ¼ P RF � L4: ð5Þ

In a similar manner, between rear suspensions LR
and RR, the equation can be formulated as

P RR � L4 ¼ P LR � L3: ð6Þ

Solving Eqs. (3)–(6) yields

P LF ¼ W � L2

L1 þ L2

� L4

L3 þ L4

; ð7Þ

P RF ¼ W � L2

L1 þ L2

� L3

L3 þ L4

; ð8Þ

P LR ¼ W � L1

L1 þ L2

� L4

L3 þ L4

; ð9Þ

and

P RR ¼ W � L1

L1 þ L2

� L3

L3 þ L4

: ð10Þ
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Fig. 7. Experimental results of using truck tires as payload. (a) Left side; (b) right side; (c) front side; (d) rear side.
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To obtain larger output voltages, gains of the
amplifiers for front suspensions and rear suspen-
sions are reset as 6350 and 2183 by prescribing
RG = 40 X and RG = 120 X, respectively. Using the
new gains to do the five experiments all over again,
the results of the right side experiment as shown in
Fig. 11 are chosen as the representative due to its
best linearity. Calculating loads for each suspension
according to Eqs. (7)–(10), the results of 21 tires, in
contrast to 24 tires in the four-corner experiment,
are shown in Table 1. According to Fig. 11 and
Table 1, equations for converting measured voltages
(V) to loads (kg) of each suspension are derived as
follows:

P LFðkgÞ ¼ 143:269� V LFðVÞ; ð11Þ
P LRðkgÞ ¼ 2178:224� V LRðVÞ; ð12Þ
P RRðkgÞ ¼ 3857:822� V RRðVÞ; ð13Þ
P RFðkgÞ ¼ 157:012� V RFðV Þ: ð14Þ
2.2.2. Results of using a car as payload

The purpose of using a car as payload is to avoid
spending time manually moving tires one by one.
Instead, it is easier to move a car into the trailer
so as to acquire more experimental data. The car
mass is 1210 kg. The car was parked on the front
side and rear side of the trailer, and five points on
each side were measured. The same experiment
was conducted again on the next day. In Fig. 12,
the representations of symbols 1F, 1R, 2F, and 2R
on the transverse are: the first day data measured
when the car was parked on the front side, the first
day data measured when the car was parked on the
rear side, the second day data measured when
parked on the front side, and the second day data
measured when parked on the rear side, respec-
tively. Converting the measured voltages in Fig. 12
of each suspension to loads in accordance with
Eqs. (11)–(14), adding the resultant four loads,
and the payload is thus derived. The error percent-
ages of the derived payloads are shown in Table 2.
The largest value is 74%, which is unacceptable.
Because the leaf spring is bent, it should have differ-
ent characteristics between compression and ten-
sion. Therefore, a neural network is employed to
reduce errors.

There is one thing worth mentioning. The
weather was windy during those days on which
the experiments were performed. Strong wind shook
the truck trailer body, which led to flickering of dis-
played data, making data reading difficult. The
experiment hence had to be postponed until the
wind subsided for better data readability.
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Fig. 10. Schematic diagram for distances measured from center
of mass to truck suspensions.

Fig. 11. Results of right side experiment using a larger gain.

LF RF

LR

RR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Fig. 8. Schematic diagram for loads applied on the left side of
truck.
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Fig. 9. Experimental results of four-corner experiment.
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Table 1
Loads for each suspension

LF (kg) LR (kg) RR (kg) RF (kg)

Front (1407 kg) 376.631 323.370 323.370 376.631
Rear (1407 kg) �257.428 957.428 957.428 �257.428
Left (1407 kg) 149.004 1600.996 �320.199 �29.800
Right (1407 kg) �29.800 �320.199 1600.996 149.040
Corners

(1608 kg)
62.771 737.229 737.229 62.771

Fig. 13. Structure of neu

Fig. 12. Experimental results of using a car as payload.

Table 2
Error percentages

Location First day error (%) Second day error (%)

Front 33 32
Rear 71 74
Front �16 15
Rear 26 50
Front �15 �03
Rear 27 27
Front �22 �11
Rear 19 10
Front �19 �22
Rear 13 �01
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3. Neural network model

A neural network is a good tool to deal with sys-
tem nonlinearity due to its learning and prediction
capability. Therefore, a neural network is employed
in this study to improve the accuracy of experimen-
tal results. The network adopted in this study is a
‘‘feedforward–backpropagation’’ model [7]. Simula-
tion is executed by using a MATLAB [8] software
on the basis of experimental data using truck tires
and the car as payloads, respectively.
3.1. Simulation results of using car data

The model structure of this simulation is shown
in Fig. 13, and the symbols are defined as follows:

(1) IW{k, l} is the weighting matrix of input,
where k, l represents the linking source and
destination of the matrix, respectively.

(2) LW{k, l} is the weighting matrix of hidden
layers.

(3) b is the bias vector.
(4) Sj, j = 1, 2, 3, represents the neuron number of

the associated hidden layer.

This model contains one nonlinear and two lin-
ear hidden layers, and the neuron numbers in each
layer are 4, 4, 1, respectively. A log-sigmoid func-
tion [7] expressed by

/ðvÞ ¼ 1

1þ expð�cvÞ ð15Þ

is used for the neuron to simulate nonlinearity,
where v is a real number and c is an index number
prescribed as 1 in this study. Output voltages of
the four bridges depicted in Fig. 12 are used as in-
puts, and the corresponding weights are used as out-
puts. Among the 20 data sets, twelve data sets are
used in training the neural networks, while the other
ral network model.
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eight are used for validation. The training is exe-
cuted 600 times. Training results are shown in
Fig. 14, where the mean-sum-square value of the er-
ror is 10�8. Next, feed the eight validation data sets
into the network to perform the simulation. The
Fig. 14. Training results of using car data.

Fig. 15. Simulation results for using tire data. (a) Fro
resultant outputs are all 1210 kg with error percent-
age less than 0.5%. The results show that the model
is correct and the model has prediction capability.
3.2. Simulation results of using tire data

In this simulation, the resultant errors vary in a
very wide range when the tire data are fed into the
model used in Section 3.1. This implies that the neu-
ral network generated from car loading data cannot
predict tire loading. One possible reason is that the
center of gravity of the payload varies when tires are
loaded one by one. Therefore, the training method
should be modified by first pre-processing measure-
ment data, network training, and finally recovering
data in post-processing. The pre-processing and
post-processing are respectively done by ‘‘prestd’’
and ‘‘poststd’’ functions that are provided by the
MATLAB [8].

The pre-processing normalizes the averages and
standard deviations of the input matrix and the goal
matrix to be 0 and 1 correspondingly. The data
nt side; (b) rear side; (c) left side; (d) right side.



Fig. 15 (continued)

Table 3
Simulation errors of using tire data

Tire-No. Front side
(%)

Rear side
(%)

Left side
(%)

Right side
(%)

1 34.29 26.83 15.43 46.15
2 0.31 1.87 32.36 1.53
3 43.50 78.54 2.01 10.37
4 2.23 2.70 1.98 0.41
5 19.80 3.58 1.06 17.03
6 0.73 1.32 10.71 0.19
7 3.40 4.25 8.30 3.42
8 4.17 0.47 9.38 0.84
9 0.62 1.35 3.10 25.31
10 0.97 0.39 7.68 0.06
11 2.73 8.72 10.20 16.47
12 2.33 0.21 0.28 0.29
13 4.27 0.71 1.06 10.01
14 2.14 0.16 1.83 0.07
15 1.27 0.03 8.93 14.86
16 0.32 0.10 7.64 0.02
17 12.64 4.75 5.77 4.86
18 0.61 0.14 9.46 0.15
19 9.75 9.53 0.42 5.82
20 0.64 0.00 5.04 0.95

Average 7.34 7.28 7.13 7.94
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shown in Fig. 7 are used as inputs, which are
divided into three categories: half of them as train-
ing data, a quarter of them as validation data, and
the rest quarter testing data.

The network structure has also one nonlinear
and two linear hidden layers, and the neuron num-
bers are 8, 4, 1, respectively. The input is a 4 · 21
matrix and the output matrix is 21 · 1. In the begin-
ning of the training, both training errors and valida-
tion errors decrease; however, the validation errors
increase once the network becomes over-fitting.
An ‘‘over-fitting’’ for a neural network is a phenom-
enon in which errors of training data are reduced
via training whereas errors of validation data
become large [9]. By monitoring and controlling
the validation errors, over-fitting can be abated.
The final results are shown in Fig. 15, and the errors
are summarized in Table 3. In Fig. 15, the first chart
for each experiment shows mean-sum-square errors
for each category of data, which verifies that the
model has no over-fitting because both training
error and validation error drop simultaneously.
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The second chart for each experiment depicts results
of linear regression where the horizontal axis, verti-
cal axis, and the ‘‘R’’ are the goal matrix, output
matrix, and the correlation coefficient, respectively.
Correlation coefficients in Fig. 15 are all higher than
0.98, which means that simulation results are very
close to the goal.
3.3. Simulation results of using both tires data and car

data

The two models described in Sections 3.1 and 3.2
are used to deal with the associated data, respec-
Fig. 16. Simulation results for using all the data.
tively. To process all the experimental data, a third
model is designed. The model structure of this sim-
ulation has two nonlinear and two linear hidden lay-
ers. Neuron numbers in each layer are 16, 8, 4, and
1, respectively. Both data in Figs. 7 and 12 are used
in this simulation. Hence, the input is a 4 · 104
matrix and the output matrix is 104 · 1. Simulation
results are shown in Fig. 16. The average payload
error is 8%.

4. Conclusions

A strain gage approach to payload measurement
for a truck trailer has been performed in this study.
Two kinds of objects were respectively employed as
payloads: tires and a car. The payload is obtained
by summing up measured loads in the four suspen-
sions; however, resultant errors are quite large. One
possible reason is that leaf springs did not recover in
time to the original geometry before they were
loaded again. Adjusting the amplifier gain in the
bridge circuit can change the circuit sensitivity. A
low gain reduces the result error whereas the output
level is reduced at the same time.

A neural network has been developed by which
three different models have been constructed to deal
with data acquired from three experiments. Calcu-
lated payload errors are hence reduced. The largest
error of the simulation occurs at the beginning of
every experiment. It is caused by preloads that were
not applied to leaf springs. In the neural network,
the greater the number of neurons is employed,
the less error it results in; nevertheless, the probabil-
ity of encountering over-fitting is higher. The neural
network model developed in this study indeed
improves measurement result.

In future work, the whole system uncertainty will
be verified under known or controlled conditions to
determine the accuracy of the measuring system.
Moreover, strong wind will shake truck trailers,
which leads to flickering of displayed data, making
data reading difficult. Therefore, the weather condi-
tion ought to be considered when performing
experiments.
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